If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7q^2+28q=0
a = 7; b = 28; c = 0;
Δ = b2-4ac
Δ = 282-4·7·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-28}{2*7}=\frac{-56}{14} =-4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+28}{2*7}=\frac{0}{14} =0 $
| 129/3+2.5(y)=97 | | 2d-1-4d+5=5d+8-3d | | 7/21=x/6 | | 2.8x+8.2=18.56 | | 1224-312/24=y | | 9.s=99 | | 25x^2-9x+21=0 | | 13(x-3)=221 | | 3x-5=5x-3x= | | 6c-1=12c-19 | | 35x^2-40=0 | | 3805-900y=2005 | | 5x+72=8x | | 7(2w+3)+7(w-2)=49 | | 715/5+27=x | | 4(7m-2)=-36 | | 6/w=12/18 | | 15+5w+7-w+8w=82 | | Y=x+150 | | -47=9-7p | | 3x^2+4x=-14 | | -47=-9k+4+4k+9 | | x+4÷6=7÷3+x-3÷4 | | 4*(3y)=72 | | 1x+3x-56=100 | | -3(7p+6)-2(2-20p)=3(4+6p) | | 5(x+7)-7x=25 | | 0.4(-y)+42.6=113 | | (2x-1)^(2/3)=9 | | X+3/7-2x-5/3=3x-5/5 | | 30(x+8÷10)=30(2÷5+×-2÷6) | | 26+g=76.90 |